Paper 4: Further Statistics 2 Mark Scheme

Question	Scheme	Marks	AOs
1(a)	$P(A>3) = \frac{2}{5}$	B1	1.1b
	$\left(\frac{2}{5}\right)^3 = \frac{8}{125}$	M1	1.1a
	$\left(\frac{1}{5}\right) = \frac{1}{125}$	A1	1.1b
		(3)	
(b)	$f(y) = \frac{3y^2}{125}$	M1	2.1
	$E(Y) = \int_0^5 \frac{3y^3}{125} dy$ $= \left[\frac{3y^4}{500} \right]_0^5 \qquad \left[= \frac{15}{4} \right]$	M1	1.1b
	$Var(Y) = \int_{0}^{5} \left(\frac{3y^{4}}{125}\right) dy - \left(\frac{15}{4}\right)^{2}$	M1	1.1b
	= 0.9375*	A1*cso	1.1b
		(4)	
(c)	Mode = 5	B1	1.2
	Or reason based on $\frac{\mathrm{df}(y)}{\mathrm{d}y} > 0$	В1	2.4
		(2)	
(d)	From a sketch or mode > mean therefore it has negative skew	B1ft	2.4
		(1)	
(e)	$\frac{\left(2k\right)^3}{125} - \frac{k^3}{125} = 0.189$	M1	3.1a
	$\frac{7k^3}{125} = 0.189$	A1	1.1b
	k = 1.5	A1	1.1b
		(3)	

(13 marks)

Question 1 Notes:

(a)

B1: $\frac{2}{5}$ o.e. may be implied by a correct answer

M1: $\left(\text{"their} \left(\frac{2}{5} \right) \right)^3$ may be implied by a correct answer

A1: $\frac{8}{125}$ o.e.

(b)

M1: Realising that firstly need to find pdf f(y) and attempt to differentiate F(y)

M1: Continuing the argument with an attempt to integrate $y \times$ "their f(y)" $y^n \to y^{n+1}$

M1: Integrating $y^2 \times$ "their f(y)" - ["their E(Y)"]² $y^n \to y^{n+1}$

A1*: Complete correct solution no errors

(c)

B1: 5 only

B1: Explain their reason by either an accurate sketch or $\frac{df(y)}{dy} > 0$ therefore an increasing function o.e.

(d)

B1ft: Explaining the reason for their answer. Follow through their part(b) or mean from(d) and mode from(c). A correct sketch of "their f(y)" – may be seen anywhere in question or ft their mean and mode plus a correct conclusion

NB: Watch for gaming. A student who writes both negative skew with a reason and positive skew with a reason. Please send these to your Team Leader

(e)

M1: Attempting to translate the problem into an equation using 2k and k. Allow if the brackets are missing e.g. $\frac{2k^3}{125} - \frac{k^3}{125}$. No need for the 0.189

A1: A correct equation in any form

A1: A correct answer only

Question	Scheme	Marks	AOs			
2(a)) $H_0: \rho = 0, H_1: \rho > 0$					
	Critical value at 1% level is 0.8929	B1	1.1b			
	$r_s < 0.8929$ so not significant evidence to reject H_0	M1	2.1			
	The researcher's claim is not correct (at 1% level)					
	or insufficient evidence for researcher's claim					
	or there is insufficient evidence that water gets deeper further from inner bank					
	or no (positive) correlation between depth of water and distance from inner bank					
		(4)				
(b)(i)	The ranks will remain the same therefore there will be no change to the spearman's rank correlation coefficient	B1	2.4			
(ii)	Spearman's rank correlation coefficient will increase since	B1	2.2a			
	The ranks are the same for both distance and depth therefore $d = 0$ however, n has increased or the new position follows the pattern that large b is associated with large s and so r_s will increase	B1	2.4			
		(3)				
(c)	The mean of the tied ranks is given to each	B1	2.4			
	then use PMCC	B1	2.4			
		(2)				
		(9 n	narks)			

Notes	:
(a)	
B1 :	Both hypotheses correct written using the notation ρ
B1:	awrt 0.893
M1:	Drawing a correct inference using their answer to part(a) and their CV
A1ft:	Drawing a correct inference in context using their answer to part(a) and their CV
(b)(i)	
B1:	Stating no change and an explanation including ranks remain unchanged o.e. and no
	change o.e.
(b)(ii)	
B1 :	Interpreted the outcome of adding a point as increased oe
B1:	Explaining why. Need to mention the ranks are the same for both oe and <i>n</i> has increased
	oe
(c)	
B1:	Explaining that the mean of the values for the tied ranks is given to both values

Explaining that the PMCC must be used

B1:

Question	Scheme	Marks	AOs
3(a)	95% CI for μ uses t value of 2.064	В1	3.3
	$\frac{\hat{\sigma}}{\sqrt{25}} \times "2.064" = \frac{1}{2} (2.232 - 1.128) \underline{\text{or}}$ $\frac{1}{2} (2.232 + 1.128) + "2.064" \times \frac{\hat{\sigma}}{\sqrt{25}} = 2.232 \text{ (oe)}$	M1	2.1
	$\hat{\sigma} = \frac{2.76}{"2.064"}$ or 1.3372	M1	1.1b
	$\hat{\sigma}^2 = 1.788[=1.79 (3sf)] *$	A1*cso	1.1b
		(4)	
(b)	$12.401, < \frac{24 \times 1.79}{\sigma^2} < 39.364$	B1	1.1b
	σ^*	M1	1.1a
	$\underline{1.09} < \sigma^2 < \underline{3.46}$	A1	1.1b
		(3)	

(7 marks)

Notes:

(a)

B1: Realising that the *t*-distribution must be used as a model and finding the correct value awrt 2.06

M1: Using the correct formula with a *t*-value, $\frac{\hat{\sigma}}{\sqrt{25}} \times "t \text{ value}" = \frac{1}{2} (2.232 - 1.128)$ or

$$\frac{1}{2}(2.232+1.128)+"t \text{ value"} \times \frac{\hat{\sigma}}{\sqrt{25}} = 2.232$$
 or

$$\frac{1}{2}$$
(2.232+1.128)-"t value"× $\frac{\hat{\sigma}}{\sqrt{25}}$ =1.128

M1: Rearranging one of these formula accurately to find a value of $\hat{\sigma}$

A1cso*: A correct solution only using awrt 1.79

(b)

B1: awrt 12.4 or 39.4 May be implied by a correct confidence interval

M1: $\frac{24 \times 1.79}{\sigma^2}$ May be implied by a correct confidence interval

A1: awrt 1.09 and awrt 3.46

Question	Scheme	Marks	AOs
4(a)	H ₀ : $\sigma_G^2 = \sigma_B^2$, H ₁ : $\sigma_G^2 \neq \sigma_B^2$,	B1	2.5
	$s_B^2 = \frac{1}{6}(56130 - 7 \times 88.9^2) = \frac{807.53}{6} = 134.6$	M1	2.1
	$\frac{2g}{6}(30130 + 200.5) \qquad \qquad 6$	A1	1.1b
	$s_G^2 = \frac{1}{7}(55746 - 8 \times 83.1^2) = \frac{501.12}{7} = 71.58$	A1	1.1b
	$\frac{s_B^2}{s_G^2} = 1.880$	M1	3.4
	Critical value $F_{6,7} = 3.87$	B1	1.1b
	Not significant, variances can be treated as the same	A1 ft	2.2b
		(7)	
(b)	H_0 : $\mu_B = \mu_G$, H_1 : $\mu_B > \mu_G$	B1	2.5
	Pooled estimate of variance $s^2 = \frac{6 \times 1346 + 7 \times 71.58}{13} = 100.6653$	M1	3.1b
	Test statistic $t = \frac{88.9 - 83.1}{s\sqrt{\frac{1}{7} + \frac{1}{8}}} = \text{awrt } 1.12$	M1	1.1b
	$S\sqrt{\frac{1}{7}+\frac{1}{8}}$	A1	1.1b
	Critical value $t_{13}(5\%) = 1.771$	B1	1.1b
	Insufficient evidence to support mother's claim	A1 ft	2.2b
		(6)	
			narks)

Notes:

(a)

B1: Both hypotheses correct using the notation σ^2 . Allow σ rather than σ^2

M1: Using a correct Method for either s_B^2 or s_G^2 May be implied by a correct value

A1: awrt 135

A1: awrt 71.6

M1: Using the F-distribution as the model e.g. $\frac{s_B^2}{s_G^2}$

B1: awrt 3.87

A1ft: Drawing a correct inference following through their CV and value for $\frac{s_B^2}{s_G^2}$

(b)

B1: Both hypotheses correct using the notation μ

M1: For realising the need to find the pooled estimate for the test require from a correct interpretation of the question

M1: Correct method for test statistic $t = \frac{88.9 - 83.1}{\text{"their } s \text{"}\sqrt{\frac{1}{7} + \frac{1}{8}}}$ May be implied by a correct

awrt 1.12

A1: awrt 1.12

B1: awrt 1.77

A1ft: Drawing a correct inference following through their CV and test statistic

Question	Scheme	Marks	AOs
5(a)	Let $X = L - 4S$ then $E(X) = 19.6 - 4 \times 4.8$	M1	2.3
	= 0.4	A1	1.1b
	$Var(X) = Var(L) + 4^2 Var(S) = 0.6^2 + 16 \times 0.3^2$	M1	2.1
	= 1.8	A1	1.1b
	$P(X>0) = [P(Z>\frac{0-0.4}{\sqrt{1.8}}=-0.298)]$	M1	2.1
	= 0.617202 awrt <u>0.617</u>	A1	1.1b
		(6)	
(b)	$T = S_1 + S_2 + S_3 + S_4$ (May be implied by 0.36)	M1	3.3
	$T \sim N(19.2, 0.36)$ $E(T) = 19.2$	B1	1.1b
	$Var(T) = 0.36$ or 0.6^2	A1	1.1b
		(3)	
(c)	Let $Y = L - T$ $E(Y) = E(L) - E(T) = [0.4]$	M1	3.3
	Var(Y) = Var(L) + Var(T) = [0.72]	M1	1.1b
	Require $P(-0.2 < Y < 0.2)$	M1	3.1a
	= 0.16708 awrt 0.167	A1	1.1b

Notes:

(a)

M1: Selecting and using an appropriate model i.e. $\pm (L-4S)$. May be implied by 0.4

A1: 0.4 oe

M1: For realising the need to use $Var(L) + 4^2Var(S)$. Allow use of 0.6 for Var(L) instead of 0.6 and/or 0.3 for Var(S) instead of 0.3 may be implied by 1.8

A1: 1.8 only

M1: For realising P(X > 0) is required and an attempt to find it e.g. $\frac{0 - 0.4}{\sqrt{\text{"their Var}(X)"}}$ but do not

allow a negative Var(X)

A1: awrt 0.617

(b)

M1: Selecting and using an appropriate model ie $S_1 + S_2 + S_3 + S_4$: may be implied by 0.36

B1: 19.2 only

A1: 0.36

(c)

M1: Setting up and using the model Y = L - T. May be implied by E(Y) = E(L) - E(T)

M1: Using Var(Y) = Var(L) + Var(T)

M1: Dealing with the modulus and realising they need to find $P(-0.2 \le Y \le 0.2)$

A1: awrt 0.167

[a = $\overline{m} - b\overline{x}$ = 1.278 + 0.0277576× 8.5 = 1.5139] $m = 1.5139 - 0.02775x$ A (b) RSS = 0.12756 - $\frac{(-2.29)^2}{82.5}$ = 0.06399* A (c) x m m $m = a + bx$ a 4 1.50 1.4029 +0.0971 5 1.20 1.3752 -0.1752 6 1.40 1.3474 +0.0526 7 1.40 1.3196 +0.0804 8 1.23 1.2919 -0.0619 9 1.30 1.2641 +0.0359 10 1.20 1.2364 -0.0364 11 1.15 1.2086 -0.0586 12 1.25 1.1808 +0.0692 13 1.15 1.1531 -0.0031 (d) The point (5, 1.2) is an outlier B (e)(i) It is a valid piece of data so should be used or It does not follow the pattern according to the residuals so may contain an error making the result invalid so should be removed (ii) $a = \overline{m} - b\overline{x} = 1.28667 +0.03765 \times 8.88889 = 1.6213$ $m = 1.6213 - 0.03765x$ (iii) $m = 1.6213 - 0.03765 \times 15$ $m = 1.056$ or awrt 1.06 (by) The model is only reliable if the values are limited to those in the	larks A	Marks	Scheme					
(e)	M1 3	M1		6(a) $ \left[b = \frac{S_{xm}}{S_{xx}} = -0.0277576 \right] $				
(b) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5 = 1.5139]	0.0277576× 8.	$b\overline{x} = 1.278 +$	$[a = \overline{m} -$		
(c) $ \begin{array}{ c c c c c c c }\hline RSS = 0.12756 - \frac{(-2.29)^2}{82.5} & M \\ \hline & = 0.06399^* & A \\ \hline & & & & & & & & & & & \\ \hline & & & & &$	A1 1	A1		-0.02775x	m = 1.5139			
(c) $ \begin{array}{ c c c c c c c c } \hline x & m & m = a + bx & \varepsilon \\ \hline 4 & 1.50 & 1.4029 & +0.0971 \\ \hline 5 & 1.20 & 1.3752 & -0.1752 \\ \hline 6 & 1.40 & 1.3474 & +0.0526 \\ \hline 7 & 1.40 & 1.3196 & +0.0804 \\ \hline 8 & 1.23 & 1.2919 & -0.0619 \\ \hline 9 & 1.30 & 1.2641 & +0.0359 \\ \hline 10 & 1.20 & 1.2364 & -0.0364 \\ \hline 11 & 1.15 & 1.2086 & -0.0586 \\ \hline 12 & 1.25 & 1.1808 & +0.0692 \\ \hline 13 & 1.15 & 1.1531 & -0.0031 \\ \hline $	(2)	(2)						
(c) $ \begin{array}{ c c c c c c c c } \hline x & m & m = a + bx & \varepsilon \\ \hline 4 & 1.50 & 1.4029 & +0.0971 \\ \hline 5 & 1.20 & 1.3752 & -0.1752 \\ \hline 6 & 1.40 & 1.3474 & +0.0526 \\ \hline 7 & 1.40 & 1.3196 & +0.0804 \\ \hline 8 & 1.23 & 1.2919 & -0.0619 \\ \hline 9 & 1.30 & 1.2641 & +0.0359 \\ \hline 10 & 1.20 & 1.2364 & -0.0364 \\ \hline 11 & 1.15 & 1.2086 & -0.0586 \\ \hline 12 & 1.25 & 1.1808 & +0.0692 \\ \hline 13 & 1.15 & 1.1531 & -0.0031 \\ \hline $	M1 1	M1		$756 - \frac{(-2.29)^2}{82.5}$	RSS = 0.127		(b)	
(c) x m $m = a + bx$ ε 4 1.50 1.4029 $+0.0971$ 5 1.20 1.3752 -0.1752 6 1.40 1.3474 $+0.0526$ 7 1.40 1.3196 $+0.0804$ 8 1.23 1.2919 -0.0619 9 1.30 1.2641 $+0.0359$ 10 1.20 1.2364 -0.0364 11 1.15 1.2086 -0.0586 12 1.25 1.1808 $+0.0692$ 13 1.15 1.1531 -0.0031 11 11 11 11 11 11 11	A1* 1	A1*		06399*	= 0.0			
4	(2)	(2)						
S 1.20 1.3752 -0.1752 6 1.40 1.3474 +0.0526 7 1.40 1.3196 +0.0804 8 1.23 1.2919 -0.0619 9 1.30 1.2641 +0.0359 10 1.20 1.2364 -0.0364 11 1.15 1.2086 -0.0586 12 1.25 1.1808 +0.0692 13 1.15 1.1531 -0.0031			ε	m=a+bx	m	x	(c)	
Color Col			+0.0971	1.4029	1.50	4		
The point (5, 1.2) is an outlier B			-0.1752	1.3752	1.20	5		
S 1.23 1.2919 -0.0619			+0.0526	1.3474	1.40	6		
8	M1 3	M1	+0.0804	1.3196	1.40	7		
10	IVII	M1	-0.0619	1.2919	1.23	8		
10			+0.0359	1.2641	1.30	9		
12 1.25 1.1808 +0.0692 13 1.15 1.1531 -0.0031 (a) (b) (b) (c) (c) (d) (d) (d) (d) (d) (e) (f) (f)	A1 1	Al	-0.0364	1.2364	1.20	10		
(d) The point $(5, 1.2)$ is an outlier (e)(i) It is a valid piece of data so should be used or It does not follow the pattern according to the residuals so may contain an error making the result invalid so should be removed (ii) $a = \overline{m} - b\overline{x} = 1.28667 + 0.03765 \times 8.88889 = 1.6213$ M (iii) $m = 1.6213 - 0.03765x$ A (iii) $m = 1.6213 - 0.03765 \times 15$ $m = 1.056$ or awrt 1.06 B (iv) The model is only reliable if the values are limited to those in the			-0.0586	1.2086	1.15	11		
(d) The point (5, 1.2) is an outlier (e)(i) It is a valid piece of data so should be used or It does not follow the pattern according to the residuals so may contain an error making the result invalid so should be removed (ii) $a = \overline{m} - b\overline{x} = 1.28667 + 0.03765 \times 8.88889 = 1.6213$ $m = 1.6213 - 0.03765x$ A (iii) $m = 1.6213 - 0.03765 \times 15$ $= 1.056$ or awrt 1.06 B (iv) The model is only reliable if the values are limited to those in the			+0.0692	1.1808	1.25	12		
(d) The point (5, 1.2) is an outlier (e)(i) It is a valid piece of data so should be used or It does not follow the pattern according to the residuals so may contain an error making the result invalid so should be removed (ii) $a = \overline{m} - b\overline{x} = 1.28667 + 0.03765 \times 8.88889 = 1.6213$ $m = 1.6213 - 0.03765x$ A (iii) $m = 1.6213 - 0.03765 \times 15$ $m = 1.056$ or awrt 1.06 B (iv) The model is only reliable if the values are limited to those in the			-0.0031	1.1531	1.15	13		
(e)(i) It is a valid piece of data so should be used or It does not follow the pattern according to the residuals so may contain an error making the result invalid so should be removed (ii) $a = \overline{m} - b\overline{x} = 1.28667 + 0.03765 \times 8.88889 = 1.6213$ $m = 1.6213 - 0.03765x$ A (iii) $m = 1.6213 - 0.03765 \times 15$ $m = 1.056$ or awrt 1.06 B (iv) The model is only reliable if the values are limited to those in the	(2)	(2)						
(e)(i) It is a valid piece of data so should be used or It does not follow the pattern according to the residuals so may contain an error making the result invalid so should be removed (ii) $a = \overline{m} - b\overline{x} = 1.28667 + 0.03765 \times 8.88889 = 1.6213$ $m = 1.6213 - 0.03765x$ A (iii) $m = 1.6213 - 0.03765 \times 15$ $= 1.056$ or awrt 1.06 B (iv) The model is only reliable if the values are limited to those in the	B1ft 2	B1ft			s an outlier	The point (5, 1.2) i	(d)	
It does not follow the pattern according to the residuals so may contain an error making the result invalid so should be removed (ii) $a = \overline{m} - b\overline{x} = 1.28667 + 0.03765 \times 8.88889 = 1.6213$ $m = 1.6213 - 0.03765x$ A (iii) $m = 1.6213 - 0.03765 \times 15$ $= 1.056$ or awrt 1.06 B (iv) The model is only reliable if the values are limited to those in the	(1)	(1)						
(ii) $a = \overline{m} - b\overline{x} = 1.28667 + 0.03765 \times 8.88889 = 1.6213$ M m = 1.6213 - 0.03765x A (iii) $m = 1.6213 - 0.03765 \times 15$ = 1.056 or awrt 1.06 B: (iv) The model is only reliable if the values are limited to those in the	B1 2	B1	or It does not follow the pattern according to the residuals so may					
$m = 1.6213 - 0.03765x$ A (iii) $m = 1.6213 - 0.03765 \times 15$ $= 1.056$ or awrt 1.06 B (iv) The model is only reliable if the values are limited to those in the	M1 3	M1		(**)				
(iii) $m = 1.6213 - 0.03765 \times 15$ = 1.056 or awrt 1.06 B (iv) The model is only reliable if the values are limited to those in the	A1 1	A 1						
= 1.056 or awrt 1.06 (iv) The model is only reliable if the values are limited to those in the	1	111						
` ' B	B1ft 3	B1ft						
given range so probably not reliable	B1 3	B1	The model is only reliable if the values are limited to those in the given range so probably not reliable					
	(5) (12 mar							

Notes:

6(a)

M1: Realising the need to use $b = \frac{S_{xm}}{S_{xx}}$ and $a = \overline{m} - b\overline{x}$

A1: m = awrt 1.51) - (awrt 0.0278) x. Award M1A1 for correct equation

(b)

M1: Using $S_{mm} - \frac{(S_{xm})^2}{S_{xx}}$

A1*: awrt 0.064

(c)

M1: Using the model in part (a) i.e. m - (1.5139) - 0.02775 implied by a correct value

A1: All correct.

Award M1A1 for a list of correct residuals

(d)

B1: Inferring from the residuals that the outlier is (5, 1.2) ft their residuals.

(e)(i)

B1: Explaining why the outlier should be removed or not.

(ii)

M1: Removing the outlier and refining the model by finding a new regression line.

A1: m = (awrt 1.62) - (awrt 0.0377)x

(iii)

B1ft: using their model in e(i) with x = 15. awrt 1.06 or ft their e(ii)

(iv)

B1: Realising the limitations of the model by stating it is <u>not reliable</u> and giving the reason why i.e. extrapolation/out of range o.e.

Question	Scheme	Marks	AOs
7(a)	$S_{xx} = \sum \left(10s\right)^2 - \frac{\left(\sum 10s\right)^2}{10}$	M1	2.1
	$2658.9 = 100\sum(s)^{2} - \frac{100(\sum s)^{2}}{10}$	M1	1.1b
	$2658.9 = 100 S_{ss}$		
	$S_{ss} = 26.589 *$	A1*cso	1.1b
		(3)	
(b)	$64 = \sum_{i=1}^{10} 10(d_i - 9)$	M1	3.1a
	$64 = 10\sum_{1}^{10} d_i - 900$		
	$\sum_{1}^{10} d_i = 96.4$	A1	1.1b
	$S_{dd} = 1081.74 - \frac{\left("96.4"\right)^2}{10}$	M1	1.1b
	= 152.444		
	r = 0.935	A1ft	1.1b
		(4)	
(c)	Linear correlation is significant but scatter diagram suggests a non-		
	linear relationship between the level of serum magnesium, and the	B1	3.5a
	level of the disease protein		
		(1)	

(8 marks)

Notes:

(a)

M1: Attempting to use $S_{xx} = \sum x^2 - \frac{\left(\sum x\right)^2}{10}$ with x = 10s

M1: Substituting in 2658.9 and dealing with the 10 correctly

A1*: cso A complete solution with no errors leading to 26.589 only

(b)

M1: Realising that either $64 = \sum_{i=1}^{10} 10(d_i - 9)$ or $64 = 10\sum_{i=1}^{10} d_i - 900$ o.e. must be used. May be implied by seeing 96.4

A1: 96.4 only

M1: Attempting to use $S_{dd} = \sum_{d} d^2 - \frac{\left(\sum_{d} d\right)^2}{10}$ may be implied by 0.935

A1ft: awrt 0.935 ft "their 96.4"

(c)

B1: A correct comment comparing their value of r and the scatter diagram in context