Paper 1: Core Pure Mathematics 1 Mark Scheme

Question	Scheme	Marks	AOs
1	$\frac{1}{(r+1)(r+3)} \equiv \frac{A}{(r+1)} + \frac{B}{(r+3)} \Rightarrow A = \dots, B = \dots$	M1	3.1a
	$\sum_{r=1}^{n} \frac{1}{(r+1)(r+3)} = \frac{1}{2 \times 2} - \frac{1}{2 \times 4} + \frac{1}{2 \times 3} - \frac{1}{2 \times 5} + \dots + \frac{1}{2n} - \frac{1}{2(n+2)} + \frac{1}{2(n+1)} - \frac{1}{2(n+3)}$	M1	2.1
	$= \frac{1}{4} + \frac{1}{6} - \frac{1}{2(n+2)} - \frac{1}{2(n+3)}$	A1	2.2a
	$=\frac{5(n+2)(n+3)-6(n+3)-6(n+2)}{12(n+2)(n+3)}$	M1	1.1b
	$=\frac{n(5n+13)}{12(n+2)(n+3)}$	A1	1.1b
		(5)	
	Alternative by induction: $n=1 \Rightarrow \frac{1}{8} = \frac{a+b}{12\times 3\times 4}, n=2 \Rightarrow \frac{1}{8} + \frac{1}{15} = \frac{2(2a+b)}{12\times 4\times 5}$ $a+b=18, 2a+b=23 \Rightarrow a=, b=$	M1	3.1a
	Assume true for $n = k$ so $\sum_{r=1}^{k} \frac{1}{(r+1)(r+3)} = \frac{k(5k+13)}{12(k+2)(k+3)}$		
	$\sum_{r=1}^{k+1} \frac{1}{(r+1)(r+3)} = \frac{k(5k+13)}{12(k+2)(k+3)} + \frac{1}{(k+2)(k+4)}$	M1	2.1
	$\frac{k(5k+13)}{12(k+2)(k+3)} + \frac{1}{(k+2)(k+4)} = \frac{k(5k+13)(k+4)+12(k+3)}{12(k+2)(k+3)(k+4)}$	A1	2.2a
	$= \frac{5k^3 + 33k^2 + 52k + 12k + 36}{12(k+2)(k+3)(k+4)} = \frac{(k+1)(k+2)(5k+18)}{12(k+2)(k+3)(k+4)}$	M1	1.1b
	$= \frac{(\underline{k+1})(5(\underline{k+1})+13)}{12(\underline{k+1}+2)(\underline{k+1}+3)}$ So true for $n = k+1$ $\sum_{r=1}^{n} \frac{1}{(r+1)(r+3)} = \frac{n(5n+13)}{12(n+2)(n+3)}$	A1	1.1b
		(5)	
		(5 n	narks)

Question 1 notes:

Main Scheme

M1: Valid attempt at partial fractions

M1: Starts the process of differences to identify the relevant fractions at the start and end

A1: Correct fractions that do not cancel

M1: Attempt common denominator

A1: Correct answer

Alternative by Induction:

M1: Uses n = 1 and n = 2 to identify values for a and b

M1: Starts the induction process by adding the $(k+1)^{th}$ term to the sum of k terms

A1: Correct single fraction

M1: Attempt to factorise the numerator

A1: Correct answer and conclusion

Question	Scheme	Marks	AOs
2	When $n = 1$, $2^{3n+1} + 3(5^{2n+1}) = 16 + 375 = 391$ $391 = 17 \times 23$ so the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $2^{3k+1} + 3(5^{2k+1})$ is divisible by 17	M1	2.4
	$f(k+1)-f(k) = 2^{3k+4} + 3(5^{2k+3}) - 2^{3k+1} - 3(5^{2k+1})$	M1	2.1
	$= 7 \times 2^{3k+1} + 7 \times 3(5^{2k+1}) + 17 \times 3(5^{2k+1})$		
	$=7f(k)+17\times3(5^{2k+1})$	A1	1.1b
	$f(k+1) = 8f(k) + 17 \times 3(5^{2k+1})$	A1	1.1b
	If the statement is true for $n = k$ then it has been shown true for $n = k + 1$ and as it is true for $n = 1$, the statement is true for all positive integers n	A1	2.4
		(6)	

(6 marks)

Notes:

B1: Shows the statement is true for n = 1

M1: Assumes the statement is true for n = k

M1: Attempts f(k+1) - f(k)

A1: Correct expression in terms of f(k)

A1: Correct expression in terms of f(k)

A1: Obtains a correct expression for f(k + 1)

A1: Correct complete conclusion

Question	Scheme	Marks	AOs
3	z = 3 - 2i is also a root	B1	1.2
	$(z - (3+2i))(z - (3-2i)) = \dots$ or Sum of roots = 6, Product of roots = 13 \Rightarrow	M1	3.1a
	$=z^2-6z+13$	A1	1.1b
	$(z^4 + az^3 + 6z^2 + bz + 65) = (z^2 - 6z + 13)(z^2 + cz + 5) \Rightarrow c = \dots$	M1	3.1a
	$z^2 + 2z + 5 = 0$	A1	1.1b
	$z^2 + 2z + 5 = 0 \Rightarrow z = \dots$	M1	1.1a
	$z = -1 \pm 2i$	A1	1.1b
	(-1,2) (3,2)	B1 $3 \pm 2i$ Plotted correctly	1.1b
	(-1, -2) Re	B1ft -1 ± 2i Plotted correctly	1.1b

(9 marks)

Notes:

B1: Identifies the complex conjugate as another root

M1: Uses the conjugate pair and a correct method to find a quadratic factor

A1: Correct quadratic

M1: Uses the given quartic and their quadratic to identify the value of c

A1: Correct 3TQ

M1: Solves their second quadratic

A1: Correct second conjugate pair

B1: First conjugate pair plotted correctly and labelled

B1ft: Second conjugate pair plotted correctly and labelled (Follow through their second conjugate pair)

Question	Scheme	Marks	AOs
4	$4 + \cos 2\theta = \frac{9}{2} \Rightarrow \theta = \dots$	M1	3.1a
	$\theta = \frac{\pi}{6}$	A1	1.1b
	$\frac{1}{2}\int (4+\cos 2\theta)^2 d\theta = \frac{1}{2}\int (16+8\cos 2\theta+\cos^2 2\theta) d\theta$	M1	3.1a
	$\cos^2 2\theta = \frac{1}{2} + \frac{1}{2}\cos 4\theta \Rightarrow A = \frac{1}{2}\int \left(16 + 8\cos 2\theta + \frac{1}{2} + \frac{1}{2}\cos 4\theta\right)d\theta$	M1	3.1a
	$=\frac{1}{2}\left[16\theta + 4\sin 2\theta + \frac{\sin 4\theta}{8} + \frac{\theta}{2}\right]$	A1	1.1b
	Using limits 0 and their $\frac{\pi}{6}$: $\frac{1}{2} \left[\frac{33\pi}{12} + 2\sqrt{3} + \frac{\sqrt{3}}{16} - (0) \right]$	M1	1.1b
	Area of triangle = $\frac{1}{2} (r \cos \theta) (r \sin \theta) = \frac{1}{2} \times \frac{81}{4} \times \frac{1}{2} \times \frac{\sqrt{3}}{2}$	M1	3.1a
	Area of $R = \frac{33\pi}{24} + \frac{33\sqrt{3}}{32} - \frac{81\sqrt{3}}{32}$	M1	1.1b
	$= \frac{11}{8}\pi - \frac{3\sqrt{3}}{2} \left(p = \frac{11}{8}, \ q = -\frac{3}{2} \right)$	A1	1.1b

(9 marks)

Notes:

M1: Realises the angle for *A* is required and attempts to find it

A1: Correct angle

M1: Uses a correct area formula and squares r to achieve a 3TQ integrand in $\cos 2\theta$

M1: Use of the correct double angle identity on the integrand to achieve a suitable form for integration

A1: Correct integration

M1: Correct use of limits

M1: Identifies the need to subtract the area of a triangle and so finds the area of the triangle

M1: Complete method for the area of R

A1: Correct final answer

Question	Scheme	Marks	AOs
5(a)	Pond contains $1000 + 5t$ litres after t days	M1	3.3
	If x is the amount of pollutant in the pond after t days		
	Rate of pollutant out = $20 \times \frac{x}{1000 + 5t}$ g per day	M1	3.3
	Rate of pollutant in = 25×2 g = 50 g per day	B1	2.2a
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 50 - \frac{4x}{200 + t}$	A1*	1.1b
		(4)	
(b)	$I = e^{\int \frac{4}{200+t} dt} = (200+t)^4 \Rightarrow x(200+t)^4 = \int 50(200+t)^4 dt$	M1	3.1b
	$x(200+t)^4 = 10(200+t)^5 + c$	A1	1.1b
	$x = 0, \ t = 0 \Rightarrow c = -3.2 \times 10^{12}$	M1	3.4
	$t = 8 \Rightarrow x = 10(200 + 8) - \frac{3.2 \times 10^{12}}{(200 + 8)^4}$	M1	1.1b
	= 370g	A1	2.2b
		(5)	
(c)	 e.g. The model should take into account the fact that the pollutant does not dissolve throughout the pond upon entry The rate of leaking could be made to vary with the volume of water in the pond 	B1	3.5c
		(1)	

(10 marks)

Notes:

(a)

M1: Forms an expression of the form 1000 + kt for the volume of water in the pond at time t

M1: Expresses the amount of pollutant out in terms of x and t

B1: Correct interpretation for pollutant entering the pond

A1*: Puts all the components together to form the correct differential equation

(b)

M1: Uses the model to find the integrating factor and attempts solution of their differential equation

A1: Correct solution

M1: Interprets the initial conditions to find the constant of integration

M1: Uses their solution to the problem to find the amount of pollutant after 8 days

A1: Correct number of grams

(c)

B1: Suggests a suitable refinement to the model

Question	Scheme	Marks	AOs
6(a)	$f(x) = \frac{x+2}{x^2+9} = \frac{x}{x^2+9} + \frac{2}{x^2+9}$	B1	3.1a
	$\int \frac{x}{x^2 + 9} dx = k \ln\left(x^2 + 9\right) (+c)$	M1	1.1b
	$\int \frac{2}{x^2 + 9} \mathrm{d}x = k \arctan\left(\frac{x}{3}\right) (+c)$	M1	1.1b
	$\int \frac{x+2}{x^2+9} dx = \frac{1}{2} \ln(x^2+9) + \frac{2}{3} \arctan\left(\frac{x}{3}\right) + c$	A1	1.1b
		(4)	
(b)	$\int_{0}^{3} f(x) dx = \left[\frac{1}{2} \ln(x^{2} + 9) + \frac{2}{3} \arctan\left(\frac{x}{3}\right) \right]_{0}^{3}$ $= \frac{1}{2} \ln 18 + \frac{2}{3} \arctan\left(\frac{3}{3}\right) - \left(\frac{1}{2} \ln 9 + \frac{2}{3} \arctan(0)\right)$ $= \frac{1}{2} \ln \frac{18}{9} + \frac{2}{3} \arctan\left(\frac{3}{3}\right)$	M1	1.1b
	Mean value = $\frac{1}{3-0} \left(\frac{1}{2} \ln 2 + \frac{\pi}{6} \right)$	M1	2.1
	$\frac{1}{6}\ln 2 + \frac{1}{18}\pi^*$	A1*	2.2a
		(3)	
(c)	$\frac{1}{6}\ln 2 + \frac{1}{18}\pi + \ln k$	M1	2.2a
	$\frac{1}{6}\ln 2k^6 + \frac{1}{18}\pi$	A1	1.1b
		(2)	

(9 marks)

Notes:

(a)

B1: Splits the fraction into two correct separate expressions

M1: Recognises the required form for the first integration

M1: Recognises the required form for the second integration

A1: Both expressions integrated correctly and added together with constant of integration included

(b)

M1: Uses limits correctly and combines logarithmic terms

M1: Correctly applies the method for the mean value for their integration

A1*: Correct work leading to the given answer

(c)

M1: Realises that the effect of the transformation is to increase the mean value by $\ln k$

A1: Combines ln's correctly to obtain the correct expression

Question	Scheme	Marks	AOs
7(a)	$x = \cos\theta + \sin\theta\cos\theta = -y\cos\theta$	M1	2.1
	$\sin\theta = -y - 1$	M1	2.1
	$\left(\frac{x}{-y}\right)^2 = 1 - \left(-y - 1\right)^2$	M1	2.1
	$x^2 = -(y^4 + 2y^3)^*$	A1*	1.1b
		(4)	
(b)	$V = \pi \int x^2 dy = \pi \int -(y^4 + 2y^3) dy$	M1	3.4
	$=\pi\left[-\left(\frac{y^5}{5}+\frac{y^4}{2}\right)\right]$	A1	1.1b
	$= -\pi \left[\left(\frac{(0)^5}{5} + \frac{(0)^4}{2} \right) - \left(\frac{(-2)^5}{5} + \frac{(-2)^4}{2} \right) \right]$	M1	3.4
	$=1.6\pi\mathrm{cm^3}\ \mathbf{or}\ \mathrm{awrt}\ 5.03\ \mathrm{cm^3}$	A1	1.1b
		(4)	

(8 marks)

Notes:

(a)

M1: Obtains x in terms of y and $\cos \theta$

M1: Obtains an equation connecting y and $\sin \theta$

M1: Uses Pythagoras to obtain an equation in x and y only

A1*: Obtains printed answer

(b)

M1: Uses the correct volume of revolution formula with the given expression

A1: Correct integration

M1: Correct use of correct limits

A1: Correct volume

Question	Scheme	Marks	AOs
8	$2+4\lambda-2(4-2\lambda)-6+\lambda=6 \Rightarrow \lambda=$	M1	1.1b
	$\lambda = 2 \Rightarrow$ Required point is $(2+2(4), 4+2(-2), -6+2(1))$ (10, 0, -4)	A1	1.1b
	$2+t-2(4-2t)-6+t=6 \Rightarrow t=$	M1	3.1a
	t = 3 so reflection of $(2,4,-6)$ is $(2+6(1),4+6(-2),-6+6(1))$	M1	3.1a
	(8, -8, 0)	A1	1.1b
		M1	3.1a
	$\mathbf{r} = \begin{pmatrix} 10 \\ 0 \\ -4 \end{pmatrix} + k \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} \text{or equivalent e.g.} \left(\mathbf{r} - \begin{pmatrix} 10 \\ 0 \\ -4 \end{pmatrix} \right) \times \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = 0$	A1	2.5
		(7)	

(7 marks)

Notes:

M1: Substitutes the parametric equation of the line into the equation of the plane and solves for λ

A1: Obtains the correct coordinates of the intersection of the line and the plane

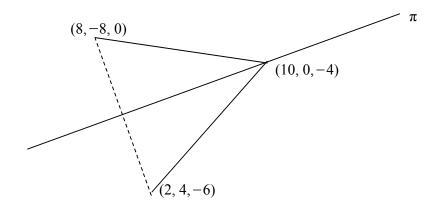
M1: Substitutes the parametric form of the line perpendicular to the plane passing through (2, 4, -6) into the equation of the plane to find t

M1: Find the reflection of (2, 4, -6) in the plane

A1: Correct coordinates

M1: Determines the direction of l by subtracting the appropriate vectors

A1: Correct vector equation using the correct notation



Question	Scheme	Marks	AOs
9(a)(i)	Weight = mass × g \Rightarrow $m = \frac{30000}{g} = 3000$ But mass is in thousands of kg, so $m = 3$	M1	3.3
(ii)	$\frac{dx}{dt} = 40\cos t + 20\sin t, \ \frac{d^2x}{dt^2} = -40\sin t + 20\cos t$	M1	1.1b
	$3(-40\sin t + 20\cos t) + 4(40\cos t + 20\sin t) + 40\sin t - 20\cos t = \dots$	M1	1.1b
	$= 200 \cos t \text{ so PI is } x = 40 \sin t - 20 \cos t$	A1*	2.1
	or		
	Let $x = a \cos t + b \sin t$ $\frac{dx}{dt} = -a \sin t + b \cos t, \frac{d^2x}{dt^2} = -a \cos t - b \sin t$	M1	1.1b
	$4b-2a = 200, -2b-4a = 0 \Rightarrow a =, b =$	M1	2.1
	$x = 40\sin t - 20\cos t$	A1*	1.1b
(iii)	$3\lambda^2 + 4\lambda + 1 = 0 \Rightarrow \lambda = -1, -\frac{1}{3}$	M1	1.1b
	$x = Ae^{-t} + Be^{-\frac{1}{3}t}$	A1	1.1b
	x = PI + CF	M1	1.1b
	$x = Ae^{-t} + Be^{-\frac{1}{3}t} + 40\sin t - 20\cos t$	A1	1.1b
		(8)	
(b)	$t = 0, x = 0 \Rightarrow A + B = 20$	M1	3.4
	$x = 0, \frac{dx}{dt} = -Ae^{-t} - \frac{1}{3}Be^{-\frac{1}{3}t} + 40\cos t + 20\sin t = 0$ $\Rightarrow A + \frac{1}{3}B = 40$	M1	3.4
	$x = 50e^{-t} - 30e^{-\frac{1}{3}t} + 40\sin t - 20\cos t$	A1	1.1b
	$t = 9 \Rightarrow x = 33$ m	A1	3.4
		(4)	
		(12 n	narks)

Ques	Question 9 notes:		
(a)(i)			
M1:	Correct explanation that in the model, $m = 3$		
(ii)			
M1:	Differentiates the given PI twice		
M1:	Substitutes into the given differential equation		
A1*:	Reaches 200cost and makes a conclusion		
or			
M1:	Uses the correct form for the PI and differentiates twice		
M1:	Substitutes into the given differential equation and attempts to solve		
A1*:	Correct PI		
(iii)			
M1:	Uses the model to form and solve the auxiliary equation		
A1:	Correct complementary function		
M1:	Uses the correct notation for the general solution by combining PI and CF		
A1:	Correct General Solution for the model		
(b)			
M1:	Uses the initial conditions of the model, $t = 0$ at $x = 0$, to form an equation in A and B		
M1:	Uses $\frac{dx}{dt} = 0$ at $x = 0$ in the model to form an equation in A and B		
A1:	Correct PS		
A1:	Obtains 33m using the assumptions made in the model		